## Section 8.2

## Representation of Matrices

a) A matrix can be denoted by an uppercase letter such as $A, B$, or $C$.
b) A matrix can be denoted by a representative element enclosed in brackets, such as $\left[a_{i j}\right],\left[b_{i j}\right]$, or $\left[c_{i j}\right]$.
c) A matrix can be denoted by a rectangular array of numbers.

## Equality of Matrices

Two matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are equal if they have the same order $(m \times n)$ and $a_{i j}=b_{i j}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$.

## Matrix Addition

If $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are matrices of order $m \times n$, their sum is the $m \times n$ matrix given by $A+B=\left[a_{i j}+b_{i j}\right]$.

## Scalar Multiplication

If $A=\left[a_{i j}\right]$ is an $m \times n$ matrix and $c$ is a scalar, the scalar multiple of $A$ by $c$ is the $m \times n$ matrix given by $c A=\left[c a_{i j}\right]$.

## Properties of Matrix Addition and Scalar Multiplication

Let $A, B$, and $C$ be $m \times n$ matrices and let $c$ and $d$ be scalars.
a) $A+B=B+A$, commutative property.
b) $A+(B+C)=(A+B)+C$, associative property.
c) $(c d) A=c(d A)$
d) $c(A+B)=c A+c B,(c+d) A=c A+d A$, distributive property.

## Matrix Multiplication

If $A=\left[a_{i j}\right]$ is an $m \times n$ matrix and $B=\left[b_{i j}\right]$ is an $n \times p$ matrix, the product $A B$ is an $m \times p$ matrix $A B=\left[c_{i j}\right]$, where $c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+a_{i 3} b_{3 j}+\cdots+a_{i n} b_{n j}$.

Problem 1. Find $x$ and $y$.
a) $\left[\begin{array}{cc}2 & x \\ y & -6\end{array}\right]=\left[\begin{array}{cc}2 & -7 \\ 10 & -6\end{array}\right]$
b) $\left[\begin{array}{ccc}x-4 & 3 & -8 \\ -1 & 3 y & 5 x \\ 4 & -6 & y-2\end{array}\right]=\left[\begin{array}{ccc}2 x-1 & 3 & -8 \\ -1 & 12 & -15 \\ 4 & -6 & 2\end{array}\right]$

Problem 2. If possible, find $A+B$, and $3 A-2 B$.
a) $A=\left[\begin{array}{cc}2 & -2 \\ 3 & 1\end{array}\right], \quad B=\left[\begin{array}{cc}-1 & 4 \\ 5 & -3\end{array}\right]$
b) $A=\left[\begin{array}{cc}-2 & 5 \\ 3 & -1 \\ 4 & 7\end{array}\right], \quad B=\left[\begin{array}{cc}-1 & 2 \\ 6 & -4 \\ 1 & -2\end{array}\right]$
c) $A=\left[\begin{array}{c}2 \\ 1 \\ -3\end{array}\right], B=\left[\begin{array}{lll}3 & -6 & 5\end{array}\right]$

Problem 3. Solve for $X$ in the equation $2 A+4 B=-2 X$, given $A=\left[\begin{array}{cc}3 & -1 \\ 2 & 4 \\ 0 & -3\end{array}\right], B=\left[\begin{array}{cc}-1 & 2 \\ 0 & 3 \\ -5 & 1\end{array}\right]$

Problem 4. If possible, find $A B$.
a) $A=\left[\begin{array}{cccc}2 & -4 & 1 & 0 \\ 3 & 1 & -1 & 5\end{array}\right], B=\left[\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right]$
b) $A=\left[\begin{array}{cc}-2 & 1 \\ 0 & 4 \\ -3 & 2\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 4 & 5\end{array}\right]$
c) $A=\left[\begin{array}{lll}0 & 2 & -1 \\ 5 & 4 & -3 \\ 1 & 2 & 1\end{array}\right], B=\left[\begin{array}{ccc}-3 & 1 & 0 \\ 0 & -4 & 6 \\ 1 & 3 & -2\end{array}\right]$

Problem 5. Find $A B, B A, A^{2}$, and $X$.
a) $A=\left[\begin{array}{cc}-1 & 2 \\ 1 & 3\end{array}\right], B=\left[\begin{array}{ll}1 & 0 \\ 2 & 0\end{array}\right] \cdot X=B A-A B-A^{2}$
b) $A=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right], B=\left[\begin{array}{cc}1 & 2 \\ -2 & 1\end{array}\right] \cdot X=A^{2}-A B-B A$

